On the algebraic representation of RNA secondary structures with G x U pairs.

نویسندگان

  • Jaume Casasnovas
  • Joe Miro-Julia
  • Francesc Rosselló
چکیده

Magarshak et al. represented an RNA molecule as a complex vector x and an RNA secondary structure gamma as a complex matrix Sgamma in such a way that the molecule represented by x was compatible with the secondary structure gamma if and only if Sgamma o x=x. They only considered Watson-Crick base pairs and their representation cannot be extended to allow for G x U pairs. In this paper we study a generalization of Magarshak's representation that allows for these pairs, and in particular we provide a family of algebraic structures where that generalization can be carried out. We also show that this representation can be used to compare secondary structures, through transfer matrices which transform the representation of one secondary structure into the representation of the other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

متن کامل

Relation Between RNA Sequences, Structures, and Shapes via Variation Networks

Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...

متن کامل

A Kind of Non-commuting Graph of Finite Groups

Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g  and  [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...

متن کامل

On the pointfree counterpart of the local definition of classical continuous maps

The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar cla...

متن کامل

On the property $U$-($G$-$PWP$) of acts

In this paper first of all we introduce Property $U$-($G$-$PWP$) of acts, which is an extension of Condition $(G$-$PWP)$ and give some general properties. Then we give a characterization of monoids when this property of acts implies some others. Also we show that the strong (faithfulness, $P$-cyclicity) and ($P$-)regularity of acts imply the property $U$-($G$-$PWP$). Finally, we give a necessar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical biology

دوره 47 1  شماره 

صفحات  -

تاریخ انتشار 2003